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Abstract—Privacy is an important concern for location based
services (LBSs). In this paper, we consider a specific type €BS
known as amobile social network (MSN). We demonstrate a new
type of attack, where an adversary can combine the locationrad
friendship information found in a MSN, to violate user privacy.
We propose a fake location reporting solution that does not
require any additional trusted third party deployment. We use
extensive simulations to determine the validity of our schee. 48

Index Terms—Closeness, location privacy, mobile social net- 4
works, trajectory estimation. b

Fig. 1: Left figure: dark and light cells represent reported and
|. INTRODUCTION unreported locations, respectively. The number in eadhruicates

. ; " ; observation sequence. Right figure: the trajectory espdith of
The increasing popularity of smartphones has led to the ”%:% users, but one ?)f the userg doe% not report IJ1is Iogatdl;lﬁlthne

of mobile social networkéMSNs). A MSN is a combination gieps 4 to 6.
of online social networks and location based services. A MSN
can provide many new services, such as friends locator. User's movements; (2) Our proposed solutions utilizes Kalm
In order to provide such services, the MSN provider has fiters to determine the best fake location to upload so as
collect the location information from users and their fden to defeat the MSN's location prediction algorithm; (3) Our
This has led to concerns that such information may poses@lution does not require the use of trusted third partiéschv
privacy threat, since users may be unaware that they havay be difficult to deploy in the real world, to provide loati
revealed some sensitive information until after the faateO privacy protection.
apparent technique to protect privacy is to give users more
control over when their locations are updated. The intaitio
is that individuals are the best arbiters of what locatiores a Anonymity can be provided via the frequent changing of
private, and by allowing a user taoot upload his location at pseudonyms [1]-[4] such to make it difficult for adversati®s
such sensitive locations, location privacy is achieved. detect a user's movement. The system first defines several spe
However, this intuition may not adequately provide locatiocial regions named “mix-zones”. In these fixed areas, a numbe
privacy against an adversary that knows both the locatiofinodes enter the zone and another amount of nodes leave the
information, as well as social relationships. To illustraton- zone. Within each mix zone, nodes change their pseudonyms at
sider the map shown in Fig. 1 (Left), where the center regidhe same time, and do not report their locations in the zones.
is a hospital. A user may decide that the hospital is a sgasitBecause the transitions among nodes are simultaneous, the
area, and choose not to upload his location information whadversary cannot get the complete trajectories of usensato t
he is near the hospital. However, the adversary can use tréoe mix zones preserve the nodes’ location privacy.
data collected over time to determine the positions whereHowever, for MSN-type applications, such as friend locator
the user did update his location, and use that information applications, the MSN provider will still have to know each
infer that the user did visit the hospital. The adversary caseudonym'’s friends, so as to deliver the correct inforomati
also use the user’s friendship information to better refiree tAs such, the frequent changing of user IDs is unlikely to mask
location prediction algorithm. In Fig. 1 (Right), we seetthahe user’s identity. Another technique of providing anoiitym
the user does not upload his location near the hospital, lisito usek-anonymity techniques [5]—[8]. In such techniques, a
his friend continues to do so. Since the adversary is awareuser will only upload the location of a region, which contain
the friendship information, the adversary can use the &'en k — 1 neighbors. This will ensure that the adversary cannot
location information to fill-in the location gaps of that use pinpoint the exact user. The use kfanonymity in a MSN
In this paper, we consider the problem of providing locatiois not feasible because the user’s friends can only receive a
privacy against an adversary having access to the datztmalle approximate area, and cannot determine the location of the
by the MSN provider. Our contributions are: (1) We are theser. This will make a MSN less useful.
first to consider an attack where the adversary uses both th&he other category of location privacy preserving techegju
historical trace data and friendship information to préedic is obfuscation. For this category of techniques, the usktnyi

II. RELATED WORK



to confuse the adversary through techniques, such asiugect 2) Adversary location estimationAlgorithm 1 illustrates

noise [9]-[11], reporting fewer locations [12], reportifajse how an adversary estimates a user’s location. Since the tra-

locations [9] or increasing the intervals between reportgectories of humans are continuous and the moving pattern

locations [13]. Our approach follows this category. of human beings can be modeled by a linear process with the
The difference is that we consider a more powerful advenoise, the unreported locations in a single user’s trajgatan

sary who can utilize thériendshipinformation to better pre- be estimated by using forward and backward Kalman filling.

dict user movements. Friendship information can be combine The adversary will first provide some synthetic locations to

with location information to predict user movements. pre-fill the locations set, based on some outside knowledge.
For example, the missing data can be linearly interpolated.
ll. OVERVIEW Then, the interpolated data will later be used as measurtsmen

Our system model consists of a MSN provider and mard9r the Kalman filter.
members. The adversary may control a MSN provider. Thus, The adversary can use social relationships to predict a
the adversary has access to all of the location updates, 4®fption as follows: the adversary can first determine adtst
can use this information to filter out fake locations. Rs. If the distance between user A and his friend, user B, is
We divide time into discrete time units. A user’s request cdfSS thanizs, the adversary can regard them as being together.
be generated at any time, but will only be transmitted to tHer all MSN friends of A, the adversary can calculate the
MSN at a predefined time step. If there are multiple requedtgrcentage of being together with. When A applies an
at a time step, the phone will only provide the nearest locati Unreported location in a protected trajectory, the advgrsan
In order to protect users’ privacy, at each time step, usans (JU€ss thatd stays with one of his friends. The partial traces of
report either their real locations, fake ones or none. Werass @ user’s friends can be used as an external location source to
that friends will be able to distinguish between a real oefakestimate the hidden locations during the use of Kalman djlin
location, for instance via some unique IDs. Table | contains3) Location privacy preserving metricthe evaluation met-
the notations used. ric is the average error between guessing results and real
1) Kalman filter: The adversary will use the Kalman filterlocations at each reporting time. An adversary’s error elegr

, , ; G Loca,Locr
to estimate users’ unreported locations. The Kalman fikker ¢an be calculated &/, , — 2 g ILocs il \where Wy,

Z amount(T)

a set of mathematical equations that provide efficient COMPpresents the average mistake degree of an adversargs-gue
tational (recursive) means to estimate the state of a PSOCESy: || e || represents Euclidean distance between a guessing
in a way that minimizes the mean of the squared error [14hcation Locs, and its corresponding real locatioBocr;
Forward and backward Kalman filling [15] is & technique,,,, ,,,,¢(T) represents the total amount of reported locations.
derived from the Kalman filter, to estimate the missing dajfithere is no fake or unreported location in the observation

of a linear system. It uses the Kalman filer's estimated statg,q ya1ye 0fiW,q, is 0. The higher the adversary error degrees
to represent the missing data. The Kalman filling algorithiye the safer users’ location privacy is.

first uses some reasonable data to pre-fill the missing data at

corresponding time steps. Then, it applies the Kalman filter IV. PROPOSEDSOLUTION
to the data, and obtains a set of estimated states of ev@ryyser traveling alone

time step. Finally, it replaces the pre-filled data by these
estimations.Forward/backward Kalman fillinguses the data
in the ascending/descending order of time.

Here, the user is traveling alone. When choosing fake
locations to update, he wants to select locations that ¢anno
be easily filtered out by the adversary.

TABLE I: Table of notation 1) Relationship between estimation error and fake location
78 Kalman gain (updating ratio) distance: Suppose that in order to protect the privacy of _his
H Observation model matrix own trace, a user wants to use N% locations as fake locations.
F State transition model matrix We assume that the user uses fake location Az, y + Ay)
I Identity matrix _ _ at time k, wherez and y represent the real location\z
Ad Extra distance provided by a user at a ime Step 544 Ay can be thought as user specifiedise Now, we
I(La;Lgp) | Mutual information between two sets of locations . :

want to calculate the relation between fake locations and

their corresponding estimated locations by Kalman filtdre T
estimation error of the Kalman filter can be evaluated by a
covariance matrixPy;, which stores the covariance of the
state at timek based on observation &t

Algorithm 1 Tracking algorithm based on Kalman filling
1: Input: Hgr reported locations at each time stefiz external
knowledge for pre-fill the unreported ones Hr

: Use Hg to pre-fill the empty items iz, obtainedH r _ T T -1
- Apply forward Kalman filter toH , obtainedH x » P = (I = Prjp—y B (H Pypos B+ R)™ H) Py, (1)

. Apply backward Kalman filter tdd », obtainedHx 5 ; : : ; ; ;
for Each unreported location i do where[ is an identity matrix,P ,_; is the covariance of the

Replace it bya * Hxr + 8 * Hxs (a, 3: weighted values) State at timek based on the past observation at tife- 1,
: Return Kalman filling resultd » ’ H is an observing matrixR is the covariance of noisé;
is a time instance andi” is the transposed matrix off.
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If the covariance ofnoisein a user’s historical location setintensively report some fake locations. As for the conditid

is relatively larger, the covariance between observatiod ausing fake locations to distort the whole trajectory, it ettbr
prediction will be greater. In other words, the further adakto report the fake locations separately.

location is from the real location, the greater the estiomati 4) The optimal fake locationUsers’ moving trajectories
error will be. are a group of points in a two-dimensional space. To find the
best fake locations at each point means to find the maximum
value of Az? + Ay? with speed restrictions. Suppose that
(z0,90), (z1,y1) and(x2,y2) are three consecutive points in

a trajectory. Assume thate,y) represent the corresponding
fake location to pointxy,y;). With the limitation of speed,
the maximum distance a user can reach in the time interval is
R. The fake location(z, y) should satisfy the following:

- - - Pratial trajectory of user A -43(
—— Trajectory of user A's friend
—— Trajectory of user A
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Fig. 2: Two users travel together Fig. 3: One user defense
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2) Estimation error of Kalman filter:The Kalman gain (@—20)"+(y—yo)” < R%; (x—22)"+ (y—12)" < R%; (4)
K determines the trust between a predicting system to its

observation, and its predicting result [14]. Under cormxdis Goal : mazimize(\/(x — 1) + (y — y1)?) (5)
where R is constant, both the estimation error covaridnge
and K will stabilize quickly and remain constant [14]. Normally, a user makes a U-turn far less than others. In order

Now, we consider the total estimation error ledmgisein to reduce the complexity of the algorithm, we always use
a 1-D space. Assume that we add to one location inz or the intersection point of two speed limitation circles ae th
y direction. Then, the additional estimation ertAe in the best fake location. Hence, the best fake locationy) can be

following n'" step can be represented as follows: computed as follows:
Ae=(I-KH)F)"KAd,n=0,1,2, ..., 2 . ygiyo)2+1 ©6)
wherel! is an identity matrix,K is the Kalman gainH is an 2T
observing matrix and” is the state transition model. The trace (22 — x0)(22 + 7o) + (2 — ¥0) (42 + ¥0)
of a user can be divided inte andy directions, which means ¢~ 2(zs — 20) —w0 (1)
the moving trace of a user can be seen as the combination of
two traces from the 1-D space. b= —2(yo + uq>, c=12 - R*+ ¢ 8)
The Kalman filter has the capacity to deal with noise T2 — To
because the expected value of noise is zero. As a result, if
; e L . ' - —b+ Vb2 —4
we providenoisein the same direction to a real location, the (z,y) = (¢ + 2o — ylin xyO), 50 ac), 9
2 7 40

influence of fake locations can be accumulated and disturb
the estimated result of the Kal_man filter. However, the value B ya(ys — yo) —b— Vb2 — dac
of Ae will decrease exponentially when goes up: If we or(z,y) = (¢ + zo0 —
provide a fixed valueAd to a group of traces, the extra
estimation error is a fixed valuér ((I — KH)F)"KAd. However, the best fake locations are obtained based on the
We use)Ad to represent this fixed value. Suppose that wassumption of knowledge of the next location. We assume
use N% of our reported locations as the fakes. Since a fdkeat there is an application that can predict the next positi
location can be considered as a real location addidg the (z2,y2) by using a current real location and a current instanta-
average estimation error of a traceN&% x AAd;. neous speed, or users may provide the next position intended
3) Fake locations reporting patternThere are two options for hiding current sensitive locations.
when reporting fake locations: 1. Concentratively repakef ~ Among all of the optimal fake locations of a trace, we note
locations in some time, then continually report the realspnehat the fake locations, which bring more errors to Kalman
2. Provide the fake locations separately. The estimatioor erfilling, are always the turning points’ corresponding fakied-
of Kalman filter at a place is the sum of errors caused Hipns. In our method, we let each user’s application recbed t
previous fake locations. However, as the parameter dezseadistribution of the distances between each of the real iogat
rapidly, an intensive reporting of fake locations will cauke and their corresponding fake ones. Therefore, reporting N%
remainder of the locations to be less protected. Therefege, fake locations means finding a distance threshoalduch that
will separately report fake locations to protect the whodee. > Dist(d > D) = N%. At each time interval T, if the
A user will only provide intensive fake location updates whedistance between a fake and real location is greater fhan
protecting a specific sensitive location, not the entiredra the application will report this fake location, otherwisenill
Hence, if a user wants to protect a certain location, he cegport the real location.

) (10)
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Algorithm 2 Fake location generation algorithm time, in turns. For exampled reports his real location at time
1: Input: Previous locatior{zo,yo), current locatiofiz, 1), cur- t1 and B reports a fake location. Then, at timig, B reports
rent speedSc, time interval7’, maximum spee®nq. the real location andd reports the fake one. Through this
2: Use(z1,y1) and S¢ to predict next location{ws, 2) method, we reduce the mutual information between the two

3: Compute the two potential fake locations based on formul@ 9- . . .
and calculate the distances from them(ia, 1) users, and also increase the uncertainty of reported totcati

4: Return the furthest potential fake locatiém, y)

V. EVALUATION

To perform the simulations, we established a Cartesian

Algorithm 3 Single user trace protection coordinate system where the poifit 0) is the beginning of a

1: Input: Real location(z1, y1), fake reporting percentag¥, fake user’s trajectory. We set the initial user speed tolhanit of
distance distributionDist and candidate fake locatiof, y) distance per unit of time, with a maximum speed7ofinits.

2: Compute the distancAd between(z1,y1) and (z, y) At each step, we provide a normal distributed noise as the

3:if ), Dist(d > Ad) < N then tat . d h | distributed noi i

4 Rétum the fake locatiofz, y) state noise, and another normal distributed noise as dhgerv

5 else noise. We use the state noise to represent the speed andgmovin

6:  Return the current locatiofw1, y1) direction change of a user. Both observation noise and state

noise are used to randomize the movement change pattern of a
user. The average speed of a user is aBdutinits of distance

per time. In experiments, we vary observing time, contirsuou
unreported locations and the closeness between two friends

The probability of two users appearing together is propor- 1) Single user resultse compare our scheme against the
tional to the closeness of them. We use the distance dititiibu |ocation omissionstrategy (the user will pickV% locations
between two usersA( and B) to measure the closeness ofnd not report them), as shown in Fig. 3. The figure shows
them. We apply the concept of mutual information to analyzfe original trajectory of a user and the trajectory estiomat
the problem. The historical location sets 4fand B can be results before and after using our fake locations-basetadet
represented by two random variablés, and Lp. We use Fig. 3 is a part of a random trajectory consisting of 2,000
I(La;Lp) to represent the mutual information betwedn points. We select 10% as a fake location reporting ratio. Fig
and B's locations sets. A high amount of mutual informatior3 shows that the Kalman filling result is inaccurate by our
between two users means that they always appear in the samégice of fake locations.
regions at the same time. For evaluating the effectiveness of our method to different

The closeness of two users is subjective. We use a pregigndom trajectories, we conducted the following simulatio
fined threshold to determine the statebfing togetherWe we fixed the maximum speed and the initial position, left the
first compute the distance’s distribution of two users. Thegther parameters randomized and generated 1,000 different
we calculate the probability that two users appear in theesamfajectories. In this experiment, each trajectory was olesk
region at the same short period of time, based on a predefirze000 times. The average speed of these traces varyZron
threshold. The probability represents the chance thatwibe tto 5.39 units of distance per time. Fig. 4 shows the average
users stay together. estimation error per observation time between protectiag v

According to Information Theory, mutual information alsdake locations and omission, and we can see that our method
represents how much the uncertainty in guesdinghas been can significantly improve the traces’ privacy of users.
removed by knowingL 4. Therefore, if user A reports his Next, we want to show that our method is always effective,
location at timet while B doesn’t, the uncertainty of thoseregardless of the length of adversaries’ observations. We
unreported locations oB will be reduced since adversariegyenerate 1,000 random traces, and the observing times lof eac
can get more information fromA’s locations. According trace changes from 100 tw)®. The fake reporting ratio and
to the definition of mutual information, by increasing thehe maximum speed are the same as the previous setting. Fig.
uncertainty of getting together, or by increasing the pbiliig 5 shows the average error's change pattern as time goes on:
of arriving at some location alone, the location-bindingtwall  the average distance approaches a constant number. Tiiis res
information between users will become less. agrees with our research result in Section IV.

A high amount of mutual information betwee# and B 2) Two users results:The adversary may compute the
also means a high value &frob(Lg|L 4). The adversary can closeness between two users using a statistic closeness.met
guess the position oB at a certain time by Prob(Lg) = When the distance between two users is less than a threshold,
Prob(Lp|La)xProb(L,) . If we can increase the uncertaintywe regard them as being together. If the closeness of tws user
of A’s reported locations, theB’s locations can be protectedis k%, then when one user does not report his locations, there
better, and vice versa. is k% probability that he is near his friend.

Our fake location generating method works as follows: In Fig. 7, we let the number of continuous unreported
when the distance betweet and his friend,B, is less than locations vary from 1 time step to 50 time steps. We compute
a predefinedeing togethedistance threshold, the two userghe average estimation error among 1,000 random trajestori
will report their real location and fake location at the samand to each trajectory, we observed 1,000 steps. We found

B. Users traveling in a group
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VI. CONCLUSION

In this paper, we consider the problem of improving location
privacy for MSNs. We introduce a new privacy attack where
the adversary uses both historic movements and friendship
° information to estimate a user’s trajectory. Our solutitbaves
O35 45 &5 85 s 43?7‘8 CRTERT a user to upload fake locations to protect his privacy. In our

¥ crsesen orianee future work, we intend to consider incorporating mobility

trajectory of user one

— - ~wajectory of user two 20
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Y direction
=
u
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The amount of two users distance

300 45 .
w0 models, such as Levy-walk, to improve our scheme.
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